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GENERAL ALGEBRAIC METHOD APPLIED TO CONTROL ANALYSIS OF
CO~MPLEX ENGINE TYPES

By- AAEON S. BOKSENBOX and RICHAED HOOD

SUMMARY

A general algebraic method of attack cm the problem of can-
trol[ing gas-turbine enp”nesbaring any number of independent
rariubles was utilized employing operatwnal junctions to
describe the assumed linear characteristicsfor the engine, the
control, and the other units in the ~ysfem. Maim”ceswere used
to describe the rarious units of the system, to jorm a. combined
system shoun”ngatl e$ects, and to jorm a single conden~ed
matrix showing the principal effects This method directly led
to the conditions on the control system for noninteraction so that
any setting disturbs nce would aJect only its corresponding con-
trolled rariab[e. Hie response-action characteristics were
e.rpresseo?in terms oj the control system and the engine char-
acteristics. The ideal control-system characteristics uwe ex-
plicitly determined in terms of any desired response action.

INTRODUCTION

The current.development of gas-turbine engines indicates a
future trend to-warda tide variety of engine types. As new
engines are de~eloped or built by combining basic components
of e.sisting engines, the control problem presented by each
engine type will be different. Control systems satisfacto~y
for one engine type could noi be expected to operate for
another engine type. Even engines of the same type but of
dtierent. size or operated under radically different conditions
may ha-w diflerent engine characteristics that require special
control characteristics. The current fluid and indeterminate
state of gas-turbine development indicates a need for a gen-
eral control analysis that could be applied to any of the new
engine types as they are de-reloped.

The control problem for engines difTersfrom that for many
plants, servomechanisms, or electric networks, because the
control of more than one variable is desired. At least those
variables that may cause failure should be controlled. For
gas-turbine engines, failure may be caused by excessive tem-
perature, speed, or torque. Exceeding specified burner oper-
ating limits may cause burner blowout. The probIem of
cent rolling more than one variable is therefore basic for gas
turbiues.

In control design, limitations may be pIaced on such char-
acteristics as response time, maximum undershoot or o~er-
shoot, dead-band, or steady-state error. This problem is
the subject. of much of the control literature to date and
various methods of exact, approximate, and graphical means
of solution have been developed (reference 1).

Controll~@ more than one variable generally introduces an
interaction amorg the controlled variabIes. Making a new
setting for one variable may cause, during the transient
state, changes in the other controUed variabIes. If these
other variabIes are operating at. or near a maximum point, ““
this interaction may cause excessive values and possible
damage to the engine. It. would therefore be desirabIe that
each new setting of a controlled ~ariabIe affect only the
variable being set., thus giv@ separate noni.ntwacting con-
trol of all the -rariabIesbeing controlled.

A generi-dalgebraic approach to control probIems of multi-
m.riable engines, which was deveIoped at the NACA Lewis
Iaboratory during 19491 is presented herein. This method
Ieads to the conditions on the control characteristics that
ekninat e interaction between control variables and to a-n
explicit soIution for control characteristics that yieIds any
desired response action.

SYMBOLS

The folIowing symbok are used in this report:
a, b, c, e
C or C (p)

C’ or C’ (p)

E or E (p)
E*

[E*[
tE*,,l
F(p)
i

L or L (p)
N

F

n
P
R or R(p)

1?’ or R’ (p)

S or S (p)
T
T

constants
control function to which engine-dependent-

variable, errors are appIied
control function to which engine-independent-

variable errors are applied
engim-characterist.ic function
square matrix using first i cohmms of engine

matrix
determinant of E* matri~
cofactor of Ejt element of E* matrix
general operat.ionaIfunction
number of engine-dependent variabIes being

controlled
instrument-characteristic function
enghe speed
measured vaIue of engine speed
number of engine-independent variables
operational symboI
response function for controlled engine-

dependent variables
response function for controkd engine-

independent variables
servo-characteristic function
engine temperature
measured value of engine temperature
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uncontrolled transient d~turbance in engine-
iqdependent variable

engine fuel flow
measured value of engine fuel flow
signal to engine fuel-flow servo
setting of engine-independent va~iable
engine-independent variable
measured value of engine-independent variable
signal to enging=indepenilentvmiabIe servo
setting of engine-dependent variable
engine-dependent variable
measured vaIue of engine-dependent variable
propelIer-blade angle :
signaI to propeller-bIade-arigle servo

be
()

engine-interaction factor y =~

engine time corratant

indices
setting of specific engine variable

L_..,_m..!1:,’,.
Engine Ins tmmeti+

F1GUK2l.—BosiIJcuntmllal-engine configuration.

ANALYSIS

The system.considered herein is essentially that shown in
figure 1. This block diagrmrdescri~es a typical engine and
control system. The general system configuration chosen
is the one employing negative feedbacl~.in which error in the
controlled variable is fed back into the control. The engine
is represented as a box with a chmacteristic function E, the
input of which is the engine-independent variable z and the
output is the engine-dependent variable y. The characteris-
tics of the instrument measuring the vaIue of the controlled
variable are denoted as L for which the input is the vmiable
itself and the output is the measured value U. The error is
the difference between the setting Y and the measured value
of the variable ~. The characteristics of the control are
denoted as a function ‘t7for which the input k the error and
the output is a signal ~ to a servo unit, which is the device
that actually changw the engine-independent variable and
compIetes the loop. The servo characteristic is.denoted as
the function Sand may be considered m a part of the control
or as a separate entity, as shown in figure 1.

In addition to the intentional disturbance made on tilw
control setting, inadvertent tmnsient dkturbancm may
appear in any part of the system. One possible source of
such transient disturbances has been included as an uncon-
trolled change in engine-independent variable. The variabIc
z is thus the sum of a controlled part and of an uncontxollod
part T7.

The characteristic functions used to dcscribc the various
units of the system are operational functions or Laphwo
transforms. The dynamic characteristics of gas-turbine
engine~~.controlsj and servos can be approximatwl by such
operational functions at leas~ for the small deviations of
variables in which the linear assumption is valid. These
operational functions can be used withou~ reference to ~ho
initial conditions of operation before dis~urbanccs occur, if
the initial condition is a steady-state condition and the values
of all variables are their deviations from the initial stwd y-
state condition. In general, the unit ctin be described by a
general.operational or transfer function as follows:

..-
j= F(p)”x (1)

I The bLcck diagram for this unit can be shown as a box
containing the ;unction F(p) for wK~chthe input is z and k
output is y.

One method of deriving the operational function for a uniL
that approximately follows a Iinea-rcliffcrcnt.ialequation is as
follows for the equation given by

fj+ati+by=ci+ex (2)

where the dots above symbols indicate derivat.ivus with
respect to time. This equation can be algebraically repre-
sented in terms of the differential operator or in terms of thu
Laplace transform variabIe (reference 2). If the differential
operator p is substituted for d/clt,equation (2) can bc writtun

p2y+apy+by=cpx+ex (3)

If this equation is solved for y, an exp]iciLexpression for the
output can then be obtained as a function of p operating on
the input x as folIows:

cp+-e
‘=p2+ap+b “z= F(p). z (4)

For each unit of the system, an equation similar to wpm-
tion (4) can be written in termsof the input, the transfer func-
tion, and the output. A set of simultaneous algebraic equfi-
tions is then obtained that can be combined or manipulatwi in
any desiredmanner, The resuItingtransfer functions can then
be interpreted from the domain of the variable N LOthe real
time domain as time responses of a variable to some spceifkd
d~turb~ce.
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For the system of figure 1, the following equations can be
written:

Engine characteristic:

y=E. z

Control characfierist.ic:

~= c. (r—&)

Instrument characteristic:

g=L. y

Servo and transient disturbance:

Z=s. g+s

(5)

Equations (5) can be combined for the effect of the disturb-
ances Y and V on the controlled variable y as foLIows:

ESC E
‘= ESCL+ 1 ‘17+ ESCL+I

. ~7 (6)

The previous procedure is,. in general, followed herein.
Equations, such as equationa (5), are w-ritten for each unit
in the system and are then combined, as in equation (6), to
obtain the effects of the disturbance.

General representation of engine.-If the engine has more
than one independent variabIe, there are addit.ionaI degrees
of freedom in control. The engine-characteristic function
must be expanded to show how each dependent variab~e of
interest is affected by alI the engine inputs as follows:

y2=E21 “ XI+& “ x2+ . . . +E2n . Z.
. . . .
. .
. . . .

(7)

In equations (7) each dependent variable y is expressed as a
linear sum of effects due to each independent variable z. For
n independent variabIes, there are n terms in each equation.
There is an equation for each dependent variable of interest.
For i dependent variables, where &Sn, there are i equations.

The number of degreea of freedom of the entire system
cannot. be greatey than the number of degrees of freedom of
the engine alone. For continuously acting controls (excluding
such controls as biters), the total number of engine variables
being controlled should not be greater than the number of
engine-independent variables. Equations (7) can be writtm
in the foUowing index form:

y~=~$ &t . x~ (8)

where
j=l,2, . . . ‘i

The functions Et, represent engine characteristics whereby
each input separately affects each output.

Equation (7) or equation (8) can be visualized in the matrix
form of figure 2. The engine functions are set up in a rec-
tangular army where Ejt represents the element in the jth
row and the Ah column. The z inputs enter the matrix in
the columns and the y outpute are attached to the rows.
Each input multiplies all the elements in its column and each
output. is the linear sum of the result~~ products in its row.
Thus the effects shown by equations (7) and (8) can be
pictorially traced in figure 2. For later use, a square matrh”
obtained by using only the first i columns in figure 2 is
denoted by E*.

J% E.a s s Eai
1’

J&

,

, 1 ‘E
yz

1 I [ ,1~,
I

I 1
‘l”

EiL Eiz , , Eii I Ei.
1’

y{

;* I
Fmum 2.-Oenerol repre-ssntstion of complex engine types.

General representation of control.-The control system is
gene.dized to this extent: (1) Inasmuch as the engine has n
independent variab~es, there are n degrees of freedom for the
entiresystem. If only a Iimited number i of enginedependeni
variabk.e are to be controlled, the difference n—i of the
engine-independent. variabka can be controlled. (2] The
controI system empIoya negative feedback -whereonly errors”
are appIied to the control. (3) Each error is to affect
every engine-independent.variabIe.

The control equations m-e tiltten where each control
output. z ia expressed as a Iinear sum of effects due to the
errora h–the controlled variabIes as follows:

~~=rll.(171—@+e12 . (Y2—lk4)+ . . . Ml-i-m+

. C’,(,+*) . (X,+, –7,+J+ ..- +C’I.(X.-T.)

;.= G.(171-T1)+C L2”(Y2-T2)+ -.. +c.i”(~’rm+

c’,,,+,) . (X,+, –T,+J+ . . . +C’m , (.s.–7.)

(9)
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There a.reatota.l ofncontroIlecl quantities, nerrors, andn
terms in each equation. There are also n engine-independent
variables and therefore n equations. Those independentt
variables ta..be controlled are given subscript numbers from
i+ 1 to n and those controls to which the co.responding
errors are appIied are denoted by C’. .

The control characteristics of ecnmtions (9) can be written.
in the following equation in index form:

9.=2Gsl “ (Ysrii”)+p=~,%
where

k=l, z,. ..n

Equations (9) and (10) can be visualized

. .

, (x.-z;) ‘ (10)

in the matrix form
of figure 3. The control functions are set up in a square
arrangement where (?~, represents the element in the kth
row and tith column. The error inputs, Y–F and A’–T,
enter the matrix in the columns and the g outputs are

Ill I 11

111 I 1. I

q(i+i) , c1.

Ckd) , c’s%

1 fl

I 1 1.

JTirT.- (x.-%)

FIOURE3.—GenorsJ representation ofcontrol system.

attached to the rows, Each input multiplies all the ele-
ments in its column and each output is the linear sum of. the
resulting products in its row. Thus, the effects shown by
equations (9) and (10) can be pictorially traced in figure 3.

Representation for instrument and servo functions,—The
chamcteristi.csof the instrument measuring the value of the
controlled variable have been denoted .as ~ in equations (5);
the input of this instrument is the variable itself and the

output, the measured value. These characteristics can bc
written as

%= Lvo “ yu
where

V=1J!2 i,.. . 1

where
FP=LW . X$

y=i+l, . . . n /

(11)

The general assumption is made U~aL each engine-
independent variable would rcquim a servo, which would
change the variable in acc,orda.nccwith its corresponding sig-
nal ~. A source of transient disturbance is included thtiLmtiy
vi-myany of the cngino-independent variabks outside of the
controlled variation in them. Thus, the expressions for ihc
engine-independent variables can be given by

Xk=fsu . ~+ Yk (12)
where

k=l,2, . ..n

Each variable z is.thus the sum of a contro]h!d part, and an
uncontrolled part,

Analysis of complete system,—The determining charac-
teristic equations for alI the units in the system arc repcahd,

Engine:

yj= $1 &~ - Xk (8)

where
j=l,2, . ..i

Control:

g= ‘& ~h . ( l?a-~,) +,$+,C’w . (A;—ZP) (10)

where
k=l,2, . . .’n

Inshiunerit:

-where

where

(11)

/J=i+l, . . . nJ
Servo and transient:

These. equations can be visualized in the mntrix form of
figure 4. Figure 4 represents, by Mock diagram, the gcm’raI
system considered herein. This figure spccificrdly is fur an
engine having five independent varinblcs for which [lnw’
engine-dependent. and two engine-indopcndcnt variables arc ,
controlled. The engine matrix is shown for the five inputs
and the three outputs to bc controlled. TIw cent.mI n-mirix
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—

&!l-Transienf Tmnsieni

—Vs v4—

E,, Ea. E=, E,, E=

IEngine X5=4
i,

Y, Yz x -% x.
con+rof se ffings

FIGURE4.-Combined geneml sontrcdled+ngine-system COfigIUStiOIL

is shown for the three y error inputs, the two x error inputs,
and the five outputs to the engine servos. The measurirg
detices, the servos, and the transients are also irduded.
The entire system is enclosed except for the outside dis-
turbances, which can be imposed on the system. These are
the five settings of controlled vaziabIes Y and .X and the
five transient.disturbances that have been included.

All the properties of the system can be obtained from this
bIock-diagram representation. The effect of any outside
disturbance or any internal disturbance can be easily traced
on figure 4. For specific effects, the equations of each unit-
of the system! equations (13), are most procIuctive of results.

Vi’hen equations (13) are combined to give the effects on
the controlled variables of the outside disturbances, the
fo~owing equations are obtained:

Yj=$l $1 E,A4’tJ~”,-Ld+

where
j=l, z,. ..i

t~=,~ SMCJ ~’a—~OgYJ+P$+IW’’JX- &zJ + U (15)

where
k=l,2, . ..n

Equation (15) is -raIiclfor the effects on any (k= 1, 2, . . . n)
engine-indepenclent -mriabIe. For the effects on the con-
trolled engine-independent variables, equation (15) is used for
k=i +1 to n. A more condensed form of the matrix repre-
sentation of the system, shown in figure 5, is indicated by

1 I.%H=tm7-m-=m I

System“matrix
I

FIGCItS5.—Condensed mstrix form of compIete cuntroIIeUsystsm.

equations (14) and (15). A single-system matrix is used in
vdich the inputs are the errors in controlled variables and
the outputs are the controlled variabIes. The ESC matrix
is a. matris in which the eIement in the j’th row and oth

column is & EjJlJ3ti. SimilarIy, an ESC’ matrix is a

matrix in which the element in the jth row and pth cohmm

is & En&C’w An SC matrix is defined as St& and an

SC’ matrix is defined as SttC’@. An additional matrix is
included showing the effects of the transient disturbances.

Noninteraction condit.ions.-Several types of noninter- __
action may be specified as folio-ivs:

(1) A specific controlled variabIe, such as y,, is to be
affected only by its own setting ~, and is not to be afiecied
b-j any other setting, which means that in figure 5 the jth
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row of the system matrix contains only the diagomd element
and the other eIements must be zero.

(2) Any specific setting, such as Y,, is to affect only its
corresponding controlled variable y~and not any of the other
controlled variables. In figure 5, the tt,h column of the
system matrix contains onIy the diagonal element and the
other elements mustibe zero;

(3) Every controlled variable is to be affected by its
corresponding setting only, .or every setting is to affect: its
corresponding controlled variable only. This compIete non-
interaction means that in figure 5 the system matrix is a
diagonal matrix. In general, the effect of the setting on the
system is of primary intcrest and a.condition such as (1) is
of secondary interest. The interaction effects defhed in
terms of the effecti of the settings, such as (2) and (3)1 will
thus be considered herein.. . .._. .

In order for any settingrsuch as Yt~to affect cdy Y;, it is
sufficient from figure 5 that for all j from 1 to i when j #t

~ Ej,&,C,,=O (16)
k= I

and for all p from i+ 1 to n

SWCP8=(1 (17)
or

c.,= o (17a)

Equation (17) states that the i+ 1 to n elements of the tth
coIumn of the C matrix (fig, 3) are to be.zeroed. AIong with
thk condition, equation (16) becomes

~+”EikswckFo “““ ““”” (18)

for all j from 1 to i where j’#t. Equation (18] expresses
i— 1homogeneous equations in the i unknown C’s and there-
fore speci.&s the ratios between any two eIements in the tth
column of the C matrix. This result becomes

s,jcj,_lE*,,(
S,,(?,, IE*,J “-- (19)

as shown in the appendix. The notation E* refers. to the
square engine matrix using only the &t i columns. The
notation ]ll*~fl indicates the cofactor of the _E~~element--of
the E* matrix. The necessary and sufficient conditions for
any setting Yt to affect only yt are

c,,= o (17a)

for all ~ from i+ 1 to n and

(19)

m shown in the.appendix.
For any setting X, to affect only x,, it is su.tlicientfrom

figure 5 that

for all j from 1 to i; and for all Mfrotn i+ 1 to n where ~#r

Sp,c’w= o (21)
or

C’w= o (21a)

Equation (21) st.atw that the i+ 1 LOn elements of [hc ML
column of the C’ matrix contain only the diagomd km.
With t.hiecondition, equation (2o) becomes

& (EjJ@M)+ Ej,S,,C’rr=O (22)

for a.Uj from 1 to -i. Equation (22) expressesi homogeneous
equations in the i+ 1 unknown (C’) ‘.sand therefore spc.cifics
the ratios between any two element.s in thc rth column of
the C’ matrix. This result.becomes

for any j and u from 1 to i or

S,,C’*,
– ~ IE*,,IEti

mr - IE*I

(23)

(24)

.
as shown in the appendix. The necessary and su~lcicnt
condition for any setting Xr to affect only z~is

G“pr=o (21a)

for all p from i+ 1 to n when P#r and

fJj,c’j,_
–k%l~*,,[Ek,

.s,,(?’,, IE*} (24)

as shown in t-heappendix.
For complete noninteraction, where-every setting is to af-

fect its corresponding variable only, the conditions can be
summarized as follows:

c.,= o (17a)

where
p=i+l,.. .?z

t=l 2 i)! . . .

C’w= o
where

P=i+lj . . .n (P#r)

~=i+l, . ..n

(21a)

(19)
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where
‘j, t,u=l, z,. ..i

where
j=l,2, . ..i

(24)

r=i+l, . ..n

Equations (17a] and (21a) stat-e that the i+ 1 to n rows of
the control matri~ contain only dia.gomd elements. Equa-
tion (19) gives the required ratios between a-n-ytwo elements
of any column of the C matrk. Equation (24) gives the
required ratios of any element in any column of the C’
matrix to the diagonal element..

Response equations.— The use of the operational functions
to characterize each unit in the system Wows algebraic
representations of the relations among the variables of the
system. ‘With complete noninteraction specified, the system
matrix of figure 5 becomes a diagonal matrix and each circuit
acts as foIIov7s:

and
X,= Srrc’r,(xr —Lrrzr)+ Vr (26)

W’hen these equations are sol-red for the controlled variables
as a function of the settings and the transient disturbances,
the foIlowing equations are obtained:

i .

If the operational response fumtion of y, to Yi is deilned as
R*f and the operational response function of r, to X, as R’,,,
equations (27) and (28) become

(29]

zT=R’t,. iY”,—(R’,,L,, —1) Vr (30)
where

$, E#il..&
Rjj= ,

and

R’rr= .s,c’rr ‘
S,,Q’JA- I

(31)

(32)

The response of any yj to Yj insofar as the control matrix
is concerned depends ody on the elements in the jth cohnnn
of the control matrix (fig. 3). Inasmuch as for complete
noninteract.ion only the ratios of the elements of that
column of the control matrk are specified, the response can
be independently set by choosing any one element of that
cobn.n. If the conditions for noninteracticm me used,
Rfj is a function of an-y C.~

]E*ls,#c,j
‘JJ=IE*I &C,jL,,+ \lPjal

(33]

Equations (32) and (33) show the response of any controlled
variable to its setting as determined by the control functions.
The response of a controlled engine-independent variable ‘-—
does not depend on engine characteristics (equation (32)). ~
The response of a controlled engine-dependent variable
depends on the square engine mat.rk E* (fig. 2).

An important result is obtained when equations sh-ilar
to (29) and (30) are -written for the errors in controlled —
quantities as follows:

( )Yj+jj= (1 –Rjj Ljj) Yj–Ljj ~ Ej.V~ “(34)

X,–T,=(1 –R’,rLJ (Xr–LrrT”,) (35)

The errors in controlled quantities respond in the same
manner to both setting and transient disturbances and tie . .
control con@yration chosen can act both as a control to
setting disturbances and a regulator to transient disturbances,
at least with the transient disturbances assumed.

Ideal control functions .—The control-design problem is one --
of fitting a control system to a particular plant or engine
in order to control certain variables in some specified manner.
The nature of the fina~system is characterized by the desired
response of controlled quantities to outside disturbances.
These responses may be exactly specified or given in general
qualitative terms. The nature of the engine or plant to be
controlled must be know-n in its static and dynamic states.
Any method of explicitly solving for the control functions
for any given plant and corresponding desired response
action would give an ~xact answer to this problem. ‘-- ‘-

The use of the operational functions to describe the engine,
control, and response functions and the algebraic methods
employed herein lead directly to an e.@icit solution for the
idea.1 control functions. Equations (3.2} and (33), which
give the response actions in terms of the control function,
can be solved for the control functions in terms of the
response functions as follows:

Rjj [E*,.I
S#Sf=(l _R,,Lj,) [E*1

Sr,c’,r= ““1—R’,,Lrr

(36)

(37)
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Choosing any desired response -characteristicsand solving
for the required control functions to achieve this response
are Eherefore theoretically possible. The use of these
equations as weII as the noninteract.ion conditions previously
given for control design has certain limitations that pre-
clude the use of this method in its most general sense. These
limitations arise from the inability to incorporate exactly
in a control the engine characteristics that the control is to
match. A simple first-order response can be called for in
equation (36) in spite of the higher-order transfer functions
of engine and servo. This type of response is possible only
if the control function can reduce the order of the transfer
function by allowing factoring of the numerator and the.
denominator of equation (33) into exactly the same terms.

The control functions found from equations (36) and (37)
for responses that are stable would be expected to give
satisfactory resuhs for small chtmges.in characteristics and
in the engine characteristics the control function is to
match. Special cases of engine characteristics may require
that an unstabilizing term in the engine functions be
factored out by the control. In this case, variations in
engine or control characteristics would unstiabiIize the
system. In such cases, equations (36) and (37) should be
used with the proviso that the control does not decrease the
order of the response function and the response functions
must be chosen accordingly.

The algebraic methods used in dealing with operational
functions can be further generalized in terms .of equivalent
relations w-hen the engine, the control, and the. other unit
charscterist.ice are expressed in other forms. For instante.,
if the frequency-response eha.racteristics are graphica.lly
known from tests or analysis, all the results described herein
can be graphically performed in terms of the frequency-
response characteristics in place of the operational functions.

Summary of basic theory and resrdts,-For an engine
having n engine-independent variables and for which i
engine-dependent variables are to be set and controlled (i S n.)
and for which n—i engine-independent variables are to be set
and controlled, engine, control system, instrument character-
istics, servo, and transient disturbances

Engine:

where
j=l,2, . ..i

Control:
.

me

(8)

where
k=l,2, . ..n

Instruments:

(11)

where
V=1,2, ...{

/J=i+l, .. .n

Servo and transient disturbance:

X~= 8U‘~+ X’* (12)

where
k=1,2, . ..TL

The necessary and sufllcient.conditions for any~sclting 1’1
to affect only y~are

c,, =0 (17a)

for all K from i+l to n, and

s,jcjt_ IE*,,I
Sg,c,, ~E*,,l

The necessary ancl sufficient conditions for any setting X,
to affect ordy x, are

C’,r= o

for all p from i+ 1 to 72when p#r

(24)

For complete noninteraction, equations (17) find (19) musL
be true for all values oft from 1 to i and equations (21) and

(24) must be true for all values of r from i+ 1 ton.
With complete “noninteraction spccifiwi, the rcspcmse of

the controlled variaMes and their “mwwurederror signals LO
setting and transient disturbances:arc

(29)

xr=R’r, . x,-(R’,,L,,- 1)V, (30)

and

(“ i@J’) c“)J’j+j=(l —RjjL,j} } ,–L,/

X,–T,=(1 –R’,,LJ (X,–L,, t’,) (35)
where

R’r,=
SJ?,,

SrrC’rrLr,+ 1
(32]
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With complete noninteraction specfied, the explicit ex-
pressions for the ideal control functions in terms bf the de-
sired response functions are

(36)

L%c’,,= “r’1—R’,,L,, (37]

SPECIFIC EXAMPLE

If the turbine-propeller engine, which has the two iude-
pcnclent variables fuel flow and blade angle, is considered,
the defining differential equations obtained by linearizing the
general functional forms of engine torque
speed and temperature, propeller torque
speed and blade an@e, and temperature
speed and fuel flow are

N+ TAT=—ap+bu~r

T=cu’f-eiV

as a function of
as a function of
as a function of

(38)

(39)

When these equations are placed in operational form and
speed and temperature are solved for in terms of fuel flow ancl
blade angle,

(40)

(41)

where

CASE I

Controlling iV and icP—For the case where n=.2 and i= 1,
the engine matris of figure 2 is obtained horn equation (4o)
and

El,== b
l+rp

E*=—
l+rp

y,=AT

The general controI system is -

%= C2AAT.–m) + c’22(wf,.–z3)

From equation (17a), the conditions for complete noninter-
action give

c,,= o

and from equation (24) for complete noninteraction,

sdY,2_ –p3*,J.E,, E,,_ h
S’22C’22 IE*I ‘–~–z

where the determinant of a single-ekment. matrix vmitten as
IE*]= IE*l,[E1, allows the use of the equations employed
herein for this case.

The control-system equations thus become

~= ell(iv, –iv? +: g Q’22(wf,.–ml)

The responses of speed and fuel flow to their settings
become, from equation (33),

aS’llC1l
‘a&lC1lLll-(l + ~p)

and from equation (32),

S2.C’22
.

lr~~=
S2J’22L22+I.

The expressions for the ideal control functions then become,
from equation (36),

and from equation (37), .

CASE II

Controlling N and T,—For the case where n=2 and i= 2,
the engine matris is obtained from equations (4o) and (41)
and

E,,==
6

l+rp
E,2=—

l+rp

E21=~ E22=C(1—y+Tp)
l+rp l+rp

Xl=f? z~= WI

y,=N y2=T

The genera~control system is

~= Cn(AT,-~ + Qu(T,–~

W= C’21(Ns-Ji + C22(T.— ~
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The conditions for complete–nonint.eraction give, from
equation (19),

/s,,(7,1 ]-E*l,l—=—=–*=–+(1–7+TY)
S,,c,, \E“,*[

__ E..
&1012_l~*aiJ ~~ .-:.

S2,C22 [E*,2~ ,,

The control-system equations thus become

The responses of speed and fuel flow to their settinge become

or

p3*~s22c22 =:,= J922C22 . . . . .
R2z– lE*l s22C22 L22+1E*z2~ S22c22 L22+:

The expressions for the ideal control functions then be-
come

+
IE*,l

&,&=l _:;, Lll IE* -,--2;,,+

“2 .EM= -‘“ 1“ .-..&2c22= 1 _&2L22 ]~”1 (1 –&2L22) ~

SUMMARY OF RESULTS

The control. of gas-turbine engines was limitwl to the
linear assumptions for the engine, the control system, and
the othir units in the system. Operational functions wcro
used for these units, the system was generalized LOrillow
for complex engine types having any degree of freedom, and
algebraic methods were employed in setting up the char-
acteristics of the engine, the control, the servo, rtnd the
measuring instruments. These algebraic methods wcr~ crn-
ployed to combine the various separate units into a syskm
showing how various effects are transmitM throughouL
the entire system. A condensed matrix form was uscxi
to illustrate the principal eflects on controlled variables.

By iise”of either the index or matrix form of the tdgcbraic
equations of the system, the following principal condi tious
were explicitly expressed:

(a) The conditions that must be imposed on tho
control functions so that any setting disturl.mncc will
affect only the variable being set

(b) The conditions that must be inqmscd on tho
control functions for completo nonintcraction so that
every setting disturbance vdI affect only its corrc-
spomling variable

(c) The response functions, which characterim tho
controlled-system response action, in terms of the
control-system functions

(d) The ideal control-system characteristics in terms
of any desiredresponse action.

A specific example using the turbine-propclhr engino
having two degrees of.freedom was given to illustrate the usc
of the previous results.

LEWIS l?LIGHT PROPULSION LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

CLEVfiLA~D,OHIO, April .25,1919.



APPENDIX

CALCULATION CONDITIONS
.

COPJDH’10FiS Oi?ZC MA1’EIX

Necessary condition.-’l%e general equations for the re-
sponse of the controlled variables are given by equations
(Al) and (A2) (equations (14) and (15), respectively, in the
text) as follows:

Y~= ~1 *, Gk&kcka(Y,–L%) +

jj 2 ~j,&c’~(&-&Z,)+ ~Ej,T7k (Al)
Z=lp=i+x

where
j=l,2, . ..i

x~= & &C!ti( Yu—&)+~=~l SUCIJZ- &zJ + ~~~=1
(A2)

where
k=l,2, . ..n

If the tiects of any setting Y, are separated, equations
(Al) and (M) become

vf=~~~ &AXM Ys–Z,ag,) +
##t

,~p_~l EI~StiC’~(XP-LWZJ+

~Ej,v.+ ~Ej.SMCkt(Y,–L,,y,) (A3)

x~= k Skkcti(Ya-L,@ +,=$+1&C’@(xP-LPPx~ +
6=1
s#t

Vi+ StiC,,(l”,-L:,y;) (A4)

If any setting Y, is to Meet only y,, then any Viis not a.ffecked
by Y, (j#t) and any controlled Z. (k=i+ 1 to n) is not af-
fected by Y,. If equation (A3) is considered for any j#t,
then the only term that can be a function of Y, is the last
one. Because of the arbitrary nature of the instrument
function, Y,#lJ,y, so that

&EfiStiCt,= a (A5)
k=l

where
j+t

If equation (A4) is considered for k=i+l to n, the only
term that can be a function of Y~is the last one; therefore

L.%&= o (A6)

Ck,= o (A7)

where
k=i+l, . . . n

If equation (A7) is used, equation (A5) becomes

where
j=l,2, . ..i

and
af,=o

when
. j#t

and
3j,= 1

when
j=t

The solution of this set of { equations in the
&k o~cgives

& & iE*wl&@~kSkkCkz
s,,c,,=fl=l ‘=1 E*I

and because
q,=o

when
p#t

8,,= I
when

p=i

IE*J k~Ew%.A
S,,cj$= [E*I

i unknown

.

(A8)

where
j=l,2, ...{

Because j is any number (1,2, . . . i), a simdar expression
for any other S,, C.~is

(A9)

The ratio of equations (A8) and (A9) beoomes

~jjcjt lE*tjl— .—
S,,(?,, pr,,l

(A1o)

where
j=l,2, . ..i

v=l,2, . ..i

Equations (Ai) and (A1O) thus follow necessarily from the
noninteraction condition specified.

591
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Sufficient condition.—If equation (A1O) holds,

where
?’=1,2, . . .’i

From the theory of determinants, the expression

Aiz,jp,,l =0
j=l

~rhen
r#t

when
~=t

Therefore,

&E,jS,jC,,=O–- ““‘“” (Al 1)
J=l

when
T#t

If Gquation (A7) also holds, then equation (Al 1) becomes

$E,j&jC,,=O (AI 2)

where
T#t

r=l,2, . ..i

If equations (A12) and (A7) hold, then any setting Y, will
affect only y, (fig. 5). Equtitions (A7) and (Al O) thus are
sufhient for the noninteraction condition specified.

CONDITIONS ON Cl MATRIX

Necessary condition,-When the general equations for the
response of the controlled variables (equations (Al) and
(A2)) are written separating the effects of any sctt.ing Xr,
these equations become

n

F En v,?+ ~ ~jk&@k,(xr-L,TXrj (A13)
=1

If any setting Xr is to affect only x,, then any yj is not
affected by Xr and any controlled at (ii = i+l to n) is not
affected by Xr for k # r. In equation (A13) the only term
that can be a function of X, is the last one. Because of the
arbitrary nature of the instrument function, X, # ~rx, and

& E,k)$;i’kr=() ‘“ (AI 5}

where
j=l,2, . . . i

If equation (A14) is considered for any k(i+ 1 to n) whwu
k # r, the only term that can bc a function of .Y, is the lasL
one and therefore

&&c’k’= o (Al 6)
and

c’k’= o (A17)
where

k+r

If equation (A17) is used, equation (A15) bccomcs

&EjSAY,,=- Ew%C’,,
k=l

where
j=l,2, . ..i

The solution of this set o-f i equations in the i unknown
S~JY~rgive-s

–P$/E*,jl EP,S,,C’,,
S,jc’’jr= [E.?/

or

s#’*r_.
--q pz”pjl E,,

Sr#2’rr IE*[
(AU3)

where
j=l,2, ...{

Equatio”iis (M 7) and (A18) thus follmr ncccssnriIy from the
noninteraction condition specified.

Sufficient condition.—If equtition (AH3) hohls,

From the theory of determinants applied lo LIMsecond t;rm

i EPj,Sjjc’jr+ Egr= O

F.1 TCT
and

Z E,,fii,C’i~+ .EU’S@’~r=~j=1

If equation (Al 7) also holds, the previous equation bccomcs

If equations (Al 7) and (Al 9) hold, then UJIYsetthlg .S,
will affect only r, (fig. 5). Equations .(A17) and (A 18) thus
are suf%cient for the spccificxi ]lolli~l[.t’raet.iollconditions
to hold.
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